ÇELİK YAPIMI VE ÜRETİMİ İLE İLGİLİ TÜM DETAYLAR SİTEMİZE YÜKLENECEKTİR, YORUM VE DEĞERLENDİRMELERİNİZLE SİTEMİZ DAHADA BÜYÜYECEKTİR.
KALİTELİ ÇELİK KALİTELİ EKİPMAN VE KALİTELİ İŞÇİLİKLE OLUR
Battal ÖZ

Mn Mangan

Elektrolizle arıtılmış (%99,99) saflıkta mangan parçaları ve karşılaştırma için yüksek saflıkta (%99,99 = 4N) 1 cm3 hacminde mangan bir küp.
Bir manganez filizi olan manganez oksidi

Mangan veya Manganez atom numarası 25 olan element. Simgesi Mn dir. 1774 yılında keşfedilmiştir. Periyodik tablonun 7-B grubunda yer alır. Grimsi metal renklidir. En önemli metallerden biridir.

Dieser Artikel behandelt das chemische Element. Zum irischen Lyriker siehe James Clarence Mangan.
Eigenschaften
Allgemein
Name, Symbol, Ordnungszahl Mangan, Mn, 25
Serie Übergangsmetalle
Gruppe, Periode, Block 7, 4, d
Aussehen silbrig metallisch (Stahlweiß)
CAS-Nummer 7439-96-5
Massenanteil an der Erdhülle 0,085 %[1]
Atomar [2]
Atommasse 54,938049 u
Atomradius (berechnet) 140 (161) pm
Kovalenter Radius low-spin: 139 pm, high-spin: 161 pm
Elektronenkonfiguration [Ar] 3d5 4s2
Austrittsarbeit 4,1 eV[3]
1. Ionisierungsenergie 717,3 kJ/mol
2. Ionisierungsenergie 1509 kJ/mol
3. Ionisierungsenergie 3248 kJ/mol
4. Ionisierungsenergie 4940 kJ/mol
5. Ionisierungsenergie 6990 kJ/mol
6. Ionisierungsenergie 9220 kJ/mol
7. Ionisierungsenergie 11.500 kJ/mol
Physikalisch [2]
Aggregatzustand fest
Modifikationen vier
Dichte 7,43 g/cm3 (25 °C)[4]
Mohshärte 6,0
Magnetismus paramagnetisch (alpha: chi_{m} = 9,0 · 10−4;
beta: chi_{m} = 8,2 · 10−4)[5]
Schmelzpunkt 1519 K (1246 °C)
Siedepunkt 2373 K[6] (2100 °C)
Molares Volumen 7,35 × 10−6 m3/mol
Verdampfungswärme 225 kJ/mol[6]
Schmelzwärme 13,2 kJ/mol
Schallgeschwindigkeit 5150 m/s bei 293,15 K
Spezifische Wärmekapazität 479,5[1] J/(kg · K)
Elektrische Leitfähigkeit 6,94 × 105 A/(V · m)
Wärmeleitfähigkeit 7,8 W/(m · K)
Chemisch [2]
Oxidationszustände 1, 2, 3, 4, (5), 6, 7
Oxide (Basizität) MnO, MnO2, Mn2O3, Mn2O7, Mn3O4 (stark sauer)
Normalpotential −1,18 V (Mn2+ + 2 e → Mn)
Elektronegativität 1,55 (Pauling-Skala)
Isotope
Isotop NH t1/2 ZA ZE (MeV) ZP
52Mn

{syn.}

5,591 d ε 4,712 52Cr
53Mn

in Spuren

3,74 × 106 a ε 0,597 53Cr
54Mn

{syn.}

312,3 d ε 1,377 54Cr
β 0,697 54Fe
55Mn

100 %

Stabil
56Mn

{syn.}

2,5785 h β 3,695 56Fe
Weitere Isotope siehe Liste der Isotope
NMR-Eigenschaften
  Spin γ in
rad·T−1·s−1
Er(1H) fL bei
B = 4,7 T
in MHz
55Mn 5/2 6,545 × 107 0,179 24,789
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [7]

Pulver

02 – Leicht-/Hochentzündlich

Achtung

H- und P-Sätze H: 228
P: 210-​240-​241-​280-​370+378 [7]
EU-Gefahrstoffkennzeichnung [8][7]
Leichtentzündlich
Leicht-
entzündlich
(F)
R- und S-Sätze R: 11 (Pulver)
S: 7-33-43-60 (Pulver)
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Mangan [maŋˈɡaːn] ist ein chemisches Element mit dem Elementsymbol Mn und der Ordnungszahl 25. Im Periodensystem steht es in der 7. Nebengruppe (Gruppe 7), der Mangangruppe. Mangan ist ein silberweißes, hartes, sehr sprödes Übergangsmetall, das in manchen Eigenschaften dem Eisen ähnelt.

Mangan kommt in der Natur vorwiegend als Braunstein vor und wird in großen Mengen abgebaut. 90 % des abgebauten Mangans werden in der Stahlindustrie in Form von Ferromangan als Legierungsbestandteil von Stahl eingesetzt. Dabei entzieht es dem Stahl Sauerstoff und Schwefel und verbessert gleichzeitig die Durchhärtung. Wirtschaftlich wichtig ist zudem Mangan(IV)-oxid, das als Kathode in Alkali-Mangan-Batterien eingesetzt wird.

Das Element besitzt eine hohe biologische Bedeutung als Bestandteil verschiedener Enzyme. So wirkt es an einer zentralen Stelle im Photosynthese-Zyklus, wo ein Mangan-Calcium-Cluster für die Oxidation von Wasser zu Sauerstoff verantwortlich ist.

 

Geschichte

In der Natur vorkommende Manganoxide wie Braunstein sind schon lange als natürliche Pigmente bekannt und in Gebrauch. So wurden schwarze Manganoxid-Pigmente unter anderem in den etwa 17.000 Jahre alten Höhlenmalereien in den Höhlen von Ekain und Lascaux nachgewiesen.[9][10] In der Glasherstellung werden Manganverbindungen seit dem vierten Jahrhundert vor Christus im Römischen Reich eingesetzt. Dabei hat das Mangan zwei verschiedene Funktionen. Wird Braunstein eingesetzt, färbt dieses das Glas intensiv braun-violett. Wird dagegen dreiwertiges Manganoxid in eisenhaltige Gläser gegeben, entfärbt es diese, indem es das blaufärbende zweiwertige Eisen zum schwach gelben dreiwertigen oxidiert.[11][12]

Die erste Gewinnung des Elements gelang wahrscheinlich 1770 Ignatius Gottfried Kaim (1746–1778), der Braunstein mit Kohlenstoff reduzierte und dabei unreines Mangan erhielt, das er Braunsteinkönig nannte. Diese Entdeckung ist jedoch nicht sehr bekannt geworden. 1774 erkannte Carl Wilhelm Scheele, dass Braunstein ein unbekanntes Element enthalten müsse, im gleichen Jahr stellte Johan Gottlieb Gahn auf Scheeles Anregung hin Mangan durch Reduktion von Braunstein mit Kohlenstoff her.[13] Als Name wurde nach der lateinischen Bezeichnung für Braunstein manganesia nigra zunächst Manganesium gewählt, nach der Entdeckung des Magnesiums jedoch wegen möglicher Verwechslungen zu Mangan(ium) abgekürzt. Dieser wurde von Plinius wegen der Ähnlichkeit zum Magneteisen (oder magnes masculini sexus) als magnes feminei sexus (da Braunstein nicht magnetisch ist) bezeichnet, was im Mittelalter zu manganesia wurde.[14]

1839 wurde erkannt, dass Mangan die Formbarkeit von Eisen verbessert. Als 1856 Robert Forester Mushet (1811–1891) zeigte, dass durch Zusatz von Mangan eine Massenproduktion von Stahl im Bessemer-Verfahren möglich ist, wurde Mangan in kurzer Zeit in großen Mengen zur Stahlproduktion verwendet.[15] Auch Braunstein erlangte ab 1866 technische Bedeutung, als durch Walter Weldon das Weldon-Verfahren zur Chlorherstellung entwickelt wurde, bei dem Salzsäure mit Hilfe von Braunstein zu Chlor oxidiert wird.[16]

Vorkommen

Rhodochrosit (rot) und Manganit (schwarz)

Mangan ist auf der Erde ein häufiges Element, in der kontinentalen Erdkruste kommt es mit einem Gehalt von 0,95 %[17] ähnlich häufig wie Phosphor oder Fluor vor. Nach Eisen und Titan ist es das dritthäufigste Übergangsmetall. Dabei kommt es nicht elementar, sondern stets in Verbindungen vor. Neben Mangansilikaten und Mangancarbonat ist es vor allem in Oxiden gebunden. Häufige Minerale sind die Mineralgruppe der Braunsteine, Manganit, Hausmannit, Braunit, Rhodochrosit und Rhodonit. Das Mangan kommt dabei in unterschiedlichen Oxidationsstufen als zwei-, drei- und vierwertiges Mangan vor, die mitunter wie im Hausmannit auch im gleichen Mineral vorkommen.

Während viele Verbindungen des zweiwertigen Mangans leicht wasserlöslich sind, sind Verbindungen in höheren Oxidationsstufen meist schwerlöslich und auch physikalisch und chemisch stabil. Darum bilden sich Manganerze vor allem unter oxidativen Bedingungen. Obwohl sich Eisen ähnlich wie Mangan verhält und ebenfalls unter oxidativen Bedingungen vom leichtlöslichen zweiwertigen zum schwerlöslichen dreiwertigen Eisen oxidiert, gibt es nur wenige Eisen-Mangan-Mischerze. Verantwortlich hierfür ist, dass Mangan sehr viel höhere Sauerstoffkonzentrationen für die Oxidation benötigt als Eisen.[15]

Abbauwürdige Manganerze lassen sich geologisch in drei Gruppen einteilen. Der erste Typ sind Rhodochrosit-Braunit-Erze, die in präkambrischen vulkanischen Gesteinen eingeschlossen sind. Diese Erze finden sich vorwiegend um den südlichen Atlantik, etwa in Brasilien, Guyana, der Elfenbeinküste, Ghana, Burkina Faso oder im Kongo. Erze des zweiten Typs finden sich in stark oxidierten, eisen- und silikatreichen Sedimentgesteinen aus dem Proterozoikum. Die Vorkommen dieses Typs bei Hotazel in Südafrika und Corumbá in Brasilien zählen zu den größten Manganvorkommen auf der Welt. Zum dritten Typ zählen Mangan-Schiefer-Erze, die durch Sedimentation in flachen Schelfmeeren entstanden sind. Zu diesem Typ zählen unter anderem Vorkommen in Gabun, der Ukraine und weiteren Ländern um das Schwarze Meer.[15]

Etwa 75 % der bekannten Ressourcen an Mangan liegen in der Kalahari Südafrikas. Auch in der Ukraine, Brasilien, Australien, Indien, Gabun und China finden sich größere Manganvorkommen. Größte Manganförderstaaten sind Australien, China und Südafrika, wobei die Weltgesamtförderung 2009 bei 10,8 Millionen Tonnen lag.[18]

In größeren Mengen kommt Mangan in sogenannten Manganknollen vor, knollenförmigen, bis zu 20 Zentimeter großen, porösen Konkretionen von Schwermetalloxiden in der Tiefsee, die bis zu 50 % aus Mangan bestehen können. Besonders hohe Konzentrationen an Manganknollen finden sich im Pazifik südlich von Hawaii sowie im Indischen Ozean. Ein Abbau von Manganknollen, vor allem zur Gewinnung von Kupfer, Cobalt und Nickel, wurde zeitweise intensiv untersucht, scheiterte bislang jedoch an hohen technischen Anforderungen und hohen Abbaukosten bei gleichzeitig vergleichsweise niedrigen Preisen für an Land abgebaute Metalle.[19]

Gewinnung und Darstellung

elektrolytisch raffiniertes, reines (99,99 %) Mangan

Abbauwürdige Manganerze enthalten mindestens 35 % Mangan. Je nach Gehalt und enthaltenen anderen Elementen werden die Erze für verschiedene Anwendungen bevorzugt genutzt. Metallurgisch genutztes Manganerz enthält zwischen 38 und 55 % Mangan und wird im Tagebau oder im Kammerbau-Verfahren unter Tage abgebaut. Daneben gibt es battery-grade-Erz, das mindestens 44 % Mangan sowie nur einen geringen Anteil an Kupfer, Nickel und Cobalt enthalten muss, damit es für die Produktion von Alkali-Mangan-Batterien geeignet ist, sowie chemical grade-Erz, das für die Produktion von reinem Mangan und Manganverbindungen verwendet wird.[19]

Für einen Großteil der Anwendungen wird kein reines Mangan benötigt. Stattdessen wird Ferromangan, eine Eisen-Mangan-Legierung mit 78 % Mangan, gewonnen. Dieses wird durch Reduktion von oxidischen Mangan- und Eisenerzen mit Koks in einem elektrischen Ofen hergestellt. Eine weitere Legierung, die auf diesem Weg hergestellt wird, ist die Mangan-Eisen-Silicium-Legierung Silicomangan. Hier wird zusätzlich Quarz als Siliciumquelle in den Ofen eingebracht.[19]

Reines Mangan kann technisch nicht durch die Reduktion mit Kohlenstoff gewonnen werden, da sich hierbei neben Mangan auch stabile Carbide, insbesondere Mn7C3, bilden. Erst bei Temperaturen über 1600 °C entsteht reines Mangan, bei dieser Temperatur verdampft jedoch schon ein Teil des Mangans, so dass dieser Weg nicht wirtschaftlich ist. Stattdessen wird Mangan durch Elektrolyse einer wässrigen Mangansalzlösung gewonnen. Hierzu wird eine möglichst reine Mangansulfat-Lösung verwendet, die mit Edelstahl-Elektroden bei 5–7 V elektrolysiert wird. An der Kathode entsteht dabei reines Mangan, an der Anode Sauerstoff, der mit Manganionen weiter zu Braunstein reagiert.[19]

mathrm{2 MnSO_4 + 2 H_2O longrightarrow 2 Mn + 2 H_2SO_4 + O_2}

Daneben sind auch die Gewinnung von Mangan durch die Reduktion von Manganoxiden mit Aluminium (Aluminothermie) oder Silicium möglich.

Eigenschaften

Physikalische Eigenschaften

Mangan ist ein silberweißes, hartes, sehr sprödes Schwermetall. Es schmilzt bei 1244 °C und siedet bei 2061 °C. Im Gegensatz zu den meisten anderen Metallen kristallisiert Mangan bei Raumtemperatur nicht in einer dichtesten Kugelpackung oder in der kubisch-raumzentrierten Kristallstruktur, sondern in der ungewöhnlichen α-Mangan-Struktur. Insgesamt sind vier verschiedene Modifikationen bekannt, die bei unterschiedlichen Temperaturen stabil sind. Bei Raumtemperatur ist Mangan paramagnetisch, die α-Modifikation wird unter einer Néel-Temperatur von 100 K antiferromagnetisch, während β-Mangan kein solches Verhalten zeigt.[20]

Bis zu einer Temperatur von 727 °C[21] ist die α-Mangan-Struktur am stabilsten. Es handelt sich dabei um eine verzerrte, kubische Struktur mit 58 Atomen in der Elementarzelle. Die Manganatome der Struktur lassen sich dabei in vier Gruppen mit unterschiedlichen Umgebungen und Koordinationszahlen zwischen 12 und 16 einteilen.[22] Oberhalb von 727 °C bis 1095 °C ist eine weitere ungewöhnliche Struktur, die ebenfalls kubische β-Mangan-Struktur mit 20 Formeleinheiten pro Elementarzelle und Koordinationszahlen von 12 und 14 für die Manganatome am stabilsten.[23] Erst oberhalb von 1095 °C kristallisiert das Metall in einer dichtesten Kugelpackung, der kubisch-flächenzentrierten Kristallstruktur (γ-Mangan, Kupfer-Typ). Diese geht bei 1133 °C schließlich in eine kubisch-innenzentrierte Struktur (δ-Mangan, Wolfram-Typ) über.[21]

Modifikation α-Mn[22] β-Mn[23] γ-Mn[24] δ-Mn[24]
Struktur Kristallstruktur von α-Mn Kristallstruktur von β-Mn Kristallstruktur von γ-Mn Kristallstruktur von δ-Mn
Kristallsystem kubisch kubisch kubisch kubisch
Koordinationszahl 16+16+13+12 14+12 12 8
Raumgruppe Ibar{4}3m P4_132 , Fmbar{3}m Imbar{3}m
Gitterparameter a = 891,1 pm a = 631,5 pm a = 386,3 pm a = 308,1 pm
Atome pro Elementarzelle 58 20 4 2
berechnete Dichte 7,463 g/cm3 7,24 g/cm3 6,33 g/cm3 6,238 g/cm3

Chemische Eigenschaften

Als unedles Metall reagiert Mangan mit vielen Nichtmetallen. Mit Sauerstoff reagiert kompaktes Mangan langsam und oberflächlich, feinverteiltes Mangan ist dagegen an der Luft pyrophor und reagiert schnell zu Mangan(II,III)-oxid. Auch mit Fluor, Chlor, Bor, Kohlenstoff, Silicium, Phosphor, Arsen und Schwefel reagiert Mangan, wobei die Reaktionen bei Raumtemperatur nur langsam stattfinden und erst bei erhöhter Temperatur schneller sind. Mit Stickstoff reagiert das Element erst bei Temperaturen von über 1200 °C zu Mangannitrid Mn3N2, mit Wasserstoff reagiert es nicht.[25][26]

Wie andere unedle Elemente löst sich Mangan in verdünnten Säuren unter Wasserstoffentwicklung, im Gegensatz zu Chrom ist es dabei auch nicht durch eine dichte Oxidschicht passiviert. Diese Reaktion findet langsam auch in Wasser statt. Wird es in konzentrierter Schwefelsäure gelöst, bildet sich Schwefeldioxid. In wässriger Lösung sind Mn2+-Ionen, die im Komplex [Mn(H2O)6]2+ rosa gefärbt sind, besonders stabil gegenüber Oxidation oder Reduktion. Verantwortlich hierfür ist die Bildung einer energetisch begünstigten halbgefüllten d-Schale (d5). Manganionen in anderen Oxidationsstufen besitzen ebenfalls charakteristische Farben, so sind dreiwertige Manganionen rot, vierwertige braun, fünfwertige (Hypomanganat, MnO43−) blau, sechswertige (Manganat, MnO42−) grün und siebenwertige (Permanganat, MnO4) violett.[25][26]

Isotope

Es sind insgesamt 25 Isotope sowie sieben weitere Kernisomere des Mangans zwischen 44Mn und 69Mn bekannt. Von diesen ist nur eines, 55Mn, stabil, Mangan zählt somit zu den Reinelementen. Weiterhin besitzt 53Mn mit 3,74 Millionen Jahren eine lange Halbwertszeit. Alle weiteren Isotope weisen kurze Halbwertszeiten auf, davon 54Mn mit 312,3 Tagen die längste.[27]

Das langlebigste radioaktive Manganisotop 53Mn kommt in Spuren in der Natur vor. Es bildet sich durch Spallationsreaktionen in eisenhaltigen Felsen. Dabei reagiert 54Fe mit 3He aus der kosmischen Strahlung und es wird das kurzlebige 53Fe gebildet, das zu 53Mn zerfällt.[28]

mathrm{^{54}_{26}Fe + ^3_2He longrightarrow ^{53}_{26}Fe + ^4_2He  xrightarrow{- e^-}  ^{53}_{25}Mn}

Verwendung

Reines Mangan wird nur in sehr geringem Umfang genutzt. 90 % des geförderten Mangans wird als Ferromangan, Spiegeleisen oder Silicomangan in der Stahlindustrie eingesetzt. Da Mangan sehr stabile Mangan-Sauerstoff-Verbindungen bildet, wirkt es wie Aluminium und Silicium desoxidierend und verstärkt die Wirkung dieser Elemente. Zudem verhindert es die Bildung des leicht schmelzenden Eisensulfides und wirkt dadurch entschwefelnd. Gleichzeitig wird die Löslichkeit von Stickstoff im Stahl erhöht, was die Austenit-Bildung fördert. Dies ist für viele rostfreie Stähle wichtig. Eine weitere wichtige Eigenschaft von Mangan in Stahl ist, dass es die Härtbarkeit des Stahls erhöht.[19]

Auch in Legierungen mit Nichteisenmetallen, insbesondere Kupfer und Aluminium, wird Mangan eingesetzt. Es erhöht dabei die Festigkeit, Korrosionsbeständigkeit und Verformbarkeit des Metalls. Die Kupfer-Mangan-Nickel-Legierung Manganin mit 83 % Kupfer, 12 % Mangan und 5 % Nickel besitzt einen hohen elektrischen Widerstand, der nur eine sehr geringe Temperaturabhängigkeit aufweist und darum in elektrischen Instrumenten eingesetzt wird.[19]

Mangan wird auch als Aktivator in Leuchtstoffen eingesetzt. Je nach Oxidationsstufe liegt die Wellenlänge des emittierten Lichts nach heutigem Wissensstand zwischen 450 und 750 nm (Mn2+) bzw. 620 und 730 nm (Mn4+). Praktische Bedeutung haben vor allem BaMgAl10O17:Eu2+,Mn2+ (grüner Emitter) und Mg14Ge5O24:Mn4+ (roter Emitter) als Leuchtstoffe in weißen LED.[29]

Reines Mangan wird in einer Größenordnung von etwa 140.000 Tonnen pro Jahr produziert. Es wird zu einem großen Teil für die Produktion von Spezialstählen und Aluminiumlegierungen eingesetzt. Weiterhin werden daraus Zink-Mangan-Ferrite für elektronische Bauteile hergestellt.[19]

Biologische Bedeutung

Mangan-Calcium-Cluster des sauerstoffproduzierenden Komplexes

Mangan ist ein für alle Lebewesen essentielles Element und Bestandteil von verschiedenen Enzymen. Dort wirkt es in verschiedenen Arten unter anderem als Lewis-Säure, zur Bildung der Enzym-Struktur und in Redoxreaktionen. In manchen Bakterien wird es außerdem zur Energieerzeugung genutzt. So betreibt Shewanella putrefaciens, ein im Meer vorkommendes Bakterium, eine anaerobe Atmung mit Mn4+ als terminalem Elektronenakzeptor, das hierbei zu Mn2+ reduziert wird.[30]

Mangan spielt eine wichtige Rolle in der Photosynthese, und zwar bei der Oxidation von Wasser zu Sauerstoff im Photosystem II. Zentraler Bestandteil des Photosystems ist ein Komplex aus vier Manganatomen und einem Calciumatom, die über Sauerstoffbrücken miteinander verbunden sind, der sauerstoffproduzierende Komplex (oxygen-evolving complex, OEC). Hier wird in einem mehrstufigen Zyklus, dem Kok-Zyklus, bei dem das Mangan zwischen der drei- und vierwertigen Oxidationsstufe wechselt, durch Sonnenlicht Wasser gespalten und Sauerstoff, Elektronen sowie Protonen freigesetzt.[31]

mathrm{6 H_2O longrightarrow O_2 + 4 H_3O^+ + 4 e^-}

In manganhaltigen Superoxiddismutasen, die in Mitochondrien und Peroxisomen zu finden sind,[32] wird die Reaktion von Superoxid zu Sauerstoff und Wasserstoffperoxid durch Redoxreaktionen mit zwei- und dreiwertigen Manganionen katalysiert.[33]

mathrm{Mn^{3+} + HO_2cdot longrightarrow Mn^{2+} + O_2 + H^+}
mathrm{Mn^{2+} + HO_2cdot + H^+ longrightarrow Mn^{3+} + H_2O_2}

Dioxygenasen, durch die molekularer Sauerstoff in spezielle organische Moleküle eingebaut wird, enthalten meist Eisen, jedoch sind auch mehrere manganhaltige Dioxygenasen unter anderem aus den Bakterien Arthrobacter globoformis und Bacillus brevis bekannt. Manganperoxidase, ein in dem Pilz Phanerochaete chrysosporium entdecktes Enzym, ist eines der wenigen bekannten Enzyme, die einen Abbau von Lignin erlauben. Weiterhin ist Mangan an der Reaktion von Arginasen, Hydrolasen, Kinasen, Decarboxylasen und Transferasen wie Pyruvat-Carboxylase, Mevalonatkinase und Glycosyltransferase, sowie bestimmten Ribonukleotidreduktasen und Katalasen beteiligt.[25][33]

Mangan wird vom Menschen über den Dünndarm aufgenommen und vor allem in Leber, Knochen, Nieren und der Bauchspeicheldrüse gespeichert. Innerhalb von Zellen befindet sich das Element vor allem in Mitochondrien, Lysosomen und im Zellkern. Im Gehirn liegt Mangan an spezielle Proteine gebunden vor, hauptsächlich an der Glutamat-Ammonium-Ligase in Astrozyten.[34] Die Gesamtmenge an Mangan im menschlichen Körper beträgt etwa 10 bis 40 mg, der tägliche Bedarf liegt bei etwa 1 mg und die durchschnittliche Manganzufuhr in Deutschland bei ca. 2,5 mg.

Manganmangel ist selten, bei manganarm ernährten Tieren traten Skelettveränderungen, neurologische Störungen, Defekte im Kohlenhydrat-Stoffwechsel sowie Wachstums- und Fruchtbarkeitsstörungen auf.[25] Besonders manganreiche Lebensmittel sind Schwarzer Tee, Weizenkeime, Haselnüsse, Haferflocken, Sojabohnen, Leinsamen, Heidelbeeren und Roggenvollkornbrot.[35]

Sicherheit und Toxizität

Wie viele andere Metalle ist Mangan in feinverteiltem Zustand brennbar und reagiert mit Wasser. Zum Löschen können daher nur Metallbrandlöscher (Klasse D) oder Sand verwendet werden. Kompaktes Mangan ist dagegen nicht brennbar.[36]

Werden manganhaltige Stäube in hohen Dosen eingeatmet, wirken diese toxisch. Dabei kommt es zunächst zu Schäden in der Lunge mit Symptomen wie Husten, Bronchitis und Pneumonitis. Weiterhin wirkt Mangan neurotoxisch und schädigt das Zentralnervensystem. Dies äußert sich im Manganismus, einer Krankheit mit Parkinson-ähnlichen Symptomen wie motorischen Störungen.[37] Für Manganstäube existiert darum ein MAK-Wert von 0,02 mg/m3 für besonders feine Stäube, die in die Lungenbläschen eindringen können und 0,2 mg/m3 für einatembare Stäube.[36]

Nachweis

Phosphorsalzperlen, ganz rechts Mangan

Der qualitative chemische Nachweis von Manganionen kann durch Bildung von violettem Permanganat nach einer Reaktion mit Blei(IV)-oxid, Ammoniumperoxodisulfat (mit Silberionen als Katalysator) oder Hypobromit in alkalischer Lösung erfolgen.

mathrm{2  Mn^{2+} + 5  PbO_2 + 4  H^+ longrightarrow 2  MnO_4^- + 5  Pb^{2+} + 2  H_2O}
Reaktion von Mangan mit Blei(IV)-oxid in saurer Lösung

Für eine Abtrennung im Rahmen des Kationentrennganges kann der sogenannte Alkalische Sturz genutzt werden, bei dem Mangan durch eine Mischung von Wasserstoffperoxid und Natronlauge zu festem Mangan(IV)-oxidhydroxid oxidiert wird und ausfällt.

mathrm{Mn^{2+} + H_2O_2 + 2  OH^- longrightarrow MnO(OH)_2 downarrow +  H_2O}
Reaktion von Mangan mit Wasserstoffperoxid und Natronlauge zu Mangan(IV)-oxidhydroxid

Weitere mögliche Nachweisreaktionen, die auch als Vorprobe genutzt werden können, sind die Phosphorsalzperle, die sich durch die Bildung von Mangan(III)-Ionen violett färbt, sowie die Oxidationsschmelze, bei der durch die Reaktion mit Nitrationen eine grüne Schmelze von Manganat(VI) (MnO42−), bei geringer Sauerstoffzufuhr auch blaues Manganat(V) (MnO43−) gebildet wird. Wird eine Säure zugesetzt, bildet sich violettes Permanganat.[38]

Quantitativ kann Mangan durch die Atomabsorptionsspektroskopie (bei 279,5 nm)[25], durch photometrische Bestimmung von Permanganat, wobei das Absorptionsmaximum bei 525 nm liegt[39] oder durch Titration bestimmt werden. Hierbei werden im manganometrischen Verfahren nach Vollhard-Wolff Mn2+-Ionen mit Permanganat titriert, wobei sich Braunstein bildet. Der Endpunkt ist an der Rosafärbung durch verbleibendes Permanganat erkennbar.[40]

Verbindungen

Es sind Manganverbindungen in den Oxidationsstufen zwischen −3 und +7 bekannt. Am stabilsten sind zwei-, drei- und vierwertige Manganverbindungen, die niedrigeren Stufen sind vor allem in Komplexen zu finden, die höheren in Verbindungen mit Sauerstoff.

Sauerstoffverbindungen

Kaliumpermanganat

Mit Sauerstoff bildet Mangan Verbindungen in den Oxidationsstufen +2 bis +7, wobei in den höheren Stufen +5, +6 und +7 vor allem anionische Manganate sowie Manganhalogenoxide, aber auch die grüne, ölige, explosive Flüssigkeit Mangan(VII)-oxid bekannt sind. Von Bedeutung sind überwiegend die siebenwertigen, violetten Permanganate (MnO4), wobei vor allem Kaliumpermanganat eine wirtschaftliche Bedeutung besitzt. Dieses wird unter anderem als starkes Oxidationsmittel in organischen Reaktionen, Nachweisreaktionen im Rahmen der Manganometrie sowie medizinisch als Adstringens und Desinfektionsmittel eingesetzt. Die fünfwertigen blauen Hypomanganate (MnO43−) und sechswertigen grünen Manganate (MnO42−) sind instabiler und Zwischenprodukte bei der Permanganatherstellung. Daneben gibt es noch komplexe Permanganate wie die Hexamanganato(VII)-mangan(IV)-säure, (H3O)2[Mn(MnO4)6].11H2O, eine nur bei tiefen Temperaturen stabile tiefviolette Verbindung.[41] Mangan(IV)-oxid wird vorwiegend in Alkali-Mangan-Batterien als Kathodenmaterial eingesetzt. Bei der Entladung der Batterie entstehen daraus Manganoxidhydroxid sowie Mangan(II)-hydroxid. Weiterhin sind auch noch das zweiwertige Mangan(II)-oxid, das dreiwertige Mangan(III)-oxid sowie Mangan(II,III)-oxid bekannt.

Als Manganhydroxide sind Mangan(II)-hydroxid, Mangan(III)-oxidhydroxid und Mangan(IV)-oxidhydroxid bekannt. Aus Mangan(II)-salzen mit Natronlauge gefälltes weißes Mangan(II)-hydroxid ist allerdings unbeständig und wird durch Luftsauerstoff leicht zu Mangan(III,IV)-oxidhydroxid oxidiert.[42] Wegen der leichten Oxidierbarkeit findet Mangan(II)-hydroxid zur Sauerstofffixierung bei der Winkler Methode eine Anwendung.

Halogenverbindungen

Mit den Halogeniden Fluor, Chlor, Brom und Iod sind jeweils die zweiwertigen Verbindungen sowie Mangan(III)- und Mangan(IV)-fluorid sowie Mangan(III)-chlorid bekannt. Technisch wichtigstes Manganhalogenid ist das durch Reaktion von Mangan(IV)-oxid mit Salzsäure gewinnbare Mangan(II)-chlorid, das unter anderem für die Produktion von Trockenbatterien, korrosionsbeständigen und harten Magnesiumlegierungen sowie die Synthese des Antiklopfmittels (Methylcyclopentadienyl)mangantricarbonyl (MMT) verwendet wird.[43]

Weitere Manganverbindungen

Struktur von Manganocen

Mangan bildet keine bei Raumtemperatur stabile, binäre Verbindung mit Wasserstoff, lediglich Mangan(II)-hydrid konnte bei tiefen Temperaturen in einer Argon-Matrix dargestellt werden.

Es sind viele Komplexe des Mangans, vorwiegend in der Oxidationsstufe +2, bekannt. Diese liegen überwiegend als High-Spin-Komplexe mit fünf ungepaarten Elektronen und einem dementsprechend starken magnetischen Moment vor. Die Kristallfeld- und Ligandenfeldtheorie sagt hier keine bevorzugte Geometrie vorher, entsprechend sind je nach Ligand tetraedrische, oktaedrische, quadratisch-planare oder auch dodekaedrische Geometrien von Mn2+-Komplexen bekannt. Die Komplexe zeigen durch (quantenmechanisch verbotene) d-d-Übergänge eine schwache Färbung, wobei oktaedrische Mn2+-Komplexe meist schwach rosa, tetraedrische gelb-grün gefärbt sind. Mit sehr starken Liganden wie Cyanid existieren auch High-Spin-Komplexe mit nur einem ungepaarten Elektron und einer starken Ligandenfeldaufspaltung. Zu den Komplexen in niedrigeren Oxidationsstufen zählt Dimangandecacarbonyl Mn2(CO)10 mit der Oxidationsstufe 0 des Mangans sowie einer Mangan-Mangan-Einfachbindung. Auch weitere ähnliche Komplexe wie Mn(NO)3CO mit der niedrigsten bekannten Oxidationsstufe −3 im Mangan sind bekannt.[26]

Mangafodipir ist ein leberspezifisches paramagnetisches Kontrastmittel, das für die Magnetresonanztomografie (MRT) zugelassen ist. Die kontrasterhöhende Wirkung beruht auf den paramagnetischen Eigenschaften von Mn2+-Ionen, die durch die fünf ungepaarten Elektronen bedingt sind. Die toxische Wirkung der Mn2+-Ionen wird beim Mangafodipir durch die Komplexierung mit dem Liganden Dipyridoxyldiphosphat (DPDP, bzw. Fodipir) unterdrückt. Für die Bildgebung der Leber ist es den Standard-MRT-Kontrastmitteln auf der Basis von Gadolinium überlegen.[44]

Das Metallocen des Mangans ist Manganocen. Dieses besitzt im Vergleich zu Ferrocen ein Elektron weniger und somit entgegen der 18-Elektronen-Regel nur 17 Elektronen. Trotzdem kann es wegen der günstigen High-Spin-d5-Konfiguration nicht zu Mn+ reduziert werden und liegt im Festkörper in einer polymeren Struktur vor.[45]

Eine Übersicht über Manganverbindungen bietet die Kategorie:Manganverbindung.

Einzelnachweise

  1. a b Harry H. Binder: Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.
  2. Die Werte für die Eigenschaften (Infobox) sind, wenn nicht anders angegeben, aus www.webelements.com (Mangan) entnommen.
  3. Ludwig Bergmann, Clemens Schaefer, Rainer Kassing: Lehrbuch der Experimentalphysik, Band 6: Festkörper. 2. Auflage, Walter de Gruyter, 2005, ISBN 978-3-11-017485-4, S. 361.
  4. N. N. Greenwood und A. Earnshaw: Chemie der Elemente, 1. Auflage, VCH, Weinheim 1988, ISBN 3-527-26169-9, S. 1339.
  5. Weast, Robert C. (ed. in chief): CRC Handbook of Chemistry and Physics. CRC (Chemical Rubber Publishing Company), Boca Raton 1990. Seiten E-129 bis E-145. ISBN 0-8493-0470-9. Werte dort sind auf g/mol bezogen und in cgs-Einheiten angegeben. Der hier angegebene Wert ist der daraus berechnete maßeinheitslose SI-Wert.
  6. a b Yiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. In: Journal of Chemical & Engineering Data. 56, 2011, S. 328–337, doi:10.1021/je1011086.
  7. a b c Datenblatt Mangan (Pulver) bei AlfaAesar, abgerufen am 29. März 2011 (JavaScript erforderlich).
  8. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  9. Emilie Chalmin, Michel Menu, Colette Vignaud: Analysis of rock art painting and technology of Palaeolithic painters. In: Measurement Science and Technology. 14, 2003, S. 1590–1597, doi:10.1088/0957-0233/14/9/310.
  10. E. Chalmin, C. Vignaud, H. Salomon, F. Farges, J. Susini, M. Menu: Minerals discovered in paleolithic black pigments by transmission electron microscopy and micro-X-ray absorption near-edge structure. In: Applied Physics A. 83, 2006, S. 213–218, doi:10.1007/s00339-006-3510-7.
  11. E. V. Sayre, R. W. Smith: Compositional Categories of Ancient Glass. In: Science. 133, 1961, S. 1824–1826, doi:10.1126/science.133.3467.1824.
  12. W. Patrick McCray: Glassmaking in renaissance Italy: The innovation of venetian cristallo. In: JOM - Journal of the Minerals, Metals and Materials Society. 50, 1998, S. 14–19, doi:10.1007/s11837-998-0024-0.
  13. E. Rancke-Madsen: The Discovery of an Element. In: Centaurus. 19, 1975, S. 299–313, doi:10.1111/j.1600-0498.1975.tb00329.x.
  14. Justus von Liebig, Johann C. Poggendorff, Friedrich Wöhler, Hermann Kolbe: Handwörterbuch der reinen und angewandten Chemie, Band 5. 1851, S. 594–595 (eingeschränkte Vorschau in der Google Buchsuche)
  15. a b c L.A: Corathers, J.F. Machamer: Manganese. In: Society for Mining, Metallurgy, and Exploration (U.S.): Industrial minerals & rocks: commodities, markets, and uses. 7. Auflage, SME, 2006, ISBN 978-0-87335-233-8, S. 631–636 (eingeschränkte Vorschau in der Google Buchsuche).
  16. William H. Brock: Viewegs Geschichte der Chemie. Vieweg, Braunschweig 1997, ISBN 3-540-67033-5, S. 182.
  17. David R. Lide (ed.): CRC Handbook of Chemistry and Physics, 85. Auflage, CRC Press, Boca Raton, Florida, 2005. Section 14, Geophysics, Astronomy, and Acoustics; Abundance of Elements in the Earth's Crust and in the Sea.
  18. U.S. Geological Survey: Manganese. In: Mineral Commodity Summaries, Januar 2011.
  19. a b c d e f g David B. Wellbeloved, Peter M. Craven, John W. Waudby: Manganese and Manganese Alloys. In: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2005 (doi:10.1002/14356007.a16_077).
  20. J. S. Kasper, B. W. Roberts: Antiferromagnetic Structure of α-Manganese and a Magnetic Structure Study of β-Manganese. In: Physical Review. 101, 1956, S. 537–544, doi:10.1103/PhysRev.101.537.
  21. a b K. Schubert: Ein Modell für die Kristallstrukturen der chemischen Elemente. In: Acta Crystallographica. 1974, B30, S. 193–204, doi:10.1107/S0567740874002469.
  22. a b J. A. Oberteuffer, J. A. Ibers: A refinement of the atomic and thermal parameters of α-manganese from a single crystal. In: Acta Crystallographica. 1970, B26, S. 1499–1504, doi:10.1107/S0567740870004399.
  23. a b C. B. Shoemaker, D. P. Shoemaker, T. E. Hopkins, S. Yindepit: Refinement of the structure of β-manganese and of a related phase in the Mn-Ni-Si system. In: Acta Crystallographica. 1978, B34, S. 3573–3576, doi:10.1107/S0567740878011620.
  24. a b R. G. W. Wykhoff: Crystal structures. 1963, 1, S. 7–83.
  25. a b c d e Thieme Chemistry (Hrsg.): Eintrag zu Mangan im Römpp Online. Version 3.29. Georg Thieme Verlag, Stuttgart 2012, abgerufen am 29. März 2011.
  26. a b c Arnold F. Holleman, Nils Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage, de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 1608–1609.
  27. G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra: The NUBASE evaluation of nuclear and decay properties. In: Nuclear Physics. 2003, Bd. A 729, S. 3–128.
  28. J. Schaefer, T. Faestermann, G. Herzog, K. Knie, G. Korschinek, J. Masarik, A. Meier, M. Poutivtsev, G. Rugel, C. Schlüchter: Terrestrial manganese-53 - A new monitor of Earth surface processes. In: Earth and Planetary Science Letters. 251, 2006, S. 334–345, doi:10.1016/j.epsl.2006.09.016.
  29. Shigeo Shionoya, William M. Yen, Hajime Yamamoto (Hrsgg.) : Phosphor Handbook. 2. Auflage, CRC Press, Boca Raton, FL 2006, ISBN 978-0-849-33564-8, S. 153ff.
  30. Michael T. Madigan, John M. Martinko, Thomas Lazar (Übersetzer) und Freya Thomm-Reitz (Übersetzer): Brock Mikrobiologie. Pearson Studium; 11. aktualisierte Auflage 2009; ISBN 978-3-8273-7358-8; S. 644.
  31. J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni, V. K. Yachandra: Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster. In: Science. 314, 2006, S. 821–825, doi:10.1126/science.1128186.
  32. R. G. Alscher: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. In: Journal of Experimental Botany. 53, 2002, S. 1331–1341, doi:10.1093/jexbot/53.372.1331.
  33. a b Neil A. Law, M. Tyler Caudle, Vincent L. Pecoraro: Manganese Redox Enzymes and Model Systems: Properties, Structures, and Reactivity. In: Advances in Inorganic Chemistry. 46, 1998, S. 305–440, doi:10.1016/S0898-8838(08)60152-X.
  34. A. Takeda: Manganese action in brain function. In: Brain Research Reviews. 41, 2003, S. 79–87, doi:10.1016/S0165-0173(02)00234-5.
  35. Cem Ekmekcioglu, Wolfgang Marktl: Essentielle Spurenelemente: Klinik und Ernährungsmedizin. Springer, 2006, ISBN 978-3-211-20859-5, S. 148 (eingeschränkte Vorschau in der Google Buchsuche).
  36. a b Eintrag zu Mangan in der GESTIS-Stoffdatenbank des IFA, abgerufen am 28. März 2011 (JavaScript erforderlich).
  37. Annette Santamaria, Sandra Sulsky: Risk Assessment of an Essential Element: Manganese. In: Journal of Toxicology and Environmental Health, Part A. 73, 2010, S. 128–155, doi:10.1080/15287390903337118.
  38. J. Strähle, E. Schweda: Jander · Blasius – Einführung in das anorganisch-chemische Praktikum. 14. Auflage, S. Hirzel Verlag, Stuttgart 1995, ISBN 978-3-7776-0672-9, S. 186–192.
  39. J. Strähle, E. Schweda: Jander · Blasius – Einführung in das anorganisch-chemische Praktikum. 14. Auflage, S. Hirzel Verlag, Stuttgart 1995, ISBN 978-3-7776-0672-9, S. 460.
  40. J. Strähle, E. Schweda: Jander · Blasius – Einführung in das anorganisch-chemische Praktikum. 14. Auflage, S. Hirzel Verlag, Stuttgart 1995, ISBN 978-3-7776-0672-9, S. 378–379.
  41. Bernt Krebs, Klaus-Dieter Hasse: Hexamanganato(VII)-mangan(IV)-säure: eine "Pseudopermangansäure". In: Angewandte Chemie. 86, Nr. 17, 1974, S. 647-648, doi:10.1002/ange.19740861708.
  42. Heinrich Remy: Lehrbuch der Anorganischen Chemie Band II, Akademische Verlagsgesellschaft Geest & Portig Leipzig 1961, S. 255-258.
  43. Arno H. Reidies: Manganese Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2005 (doi:10.1002/14356007.a16_123).
  44. M. F. Bellin: MR contrast agents, the old and the new. In: European journal of radiology Band 60, Nummer 3, Dezember 2006, S. 314–323, ISSN 0720-048X. doi:10.1016/j.ejrad.2006.06.021. PMID 17005349.
  45. Christoph Elschenbroich: Organometallchemie. 6. Auflage, Teubner, Wiesbaden 2008, ISBN 978-3-8351-0167-8, S. 460–468.

Literatur

Weblinks

 Commons: Mangan – Sammlung von Bildern, Videos und Audiodateien
Wiktionary Wiktionary: Mangan – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wikibooks Wikibooks: Praktikum Anorganische Chemie/ Mangan – Lern- und Lehrmaterialien
Dieser Artikel wurde am 12. Mai 2011 in dieser Version in die Liste der exzellenten Artikel aufgenommen.

Vücut metabolizması üzerine etkileri

Vücutta protein sentezlenmesinde, sindirimde ve besinlerden enerji üretilmesinde görev alan önemli minerallerin içinde bulunan etkili bir elementtir. Eksikliğinde sürekli yorgunluk, hafıza problemleri, kısırlık, kilo kaybı, özellikle çocuklarda ve bebeklerde büyüme geriliği gibi belirtiler görülür.Mangan bitkiler için de çok önemli bir elementtir ve günümüz modern tarım sektöründe vazgeçilmez bir gübre içeriğidir.


Grimsi metal renklidir. Çeliğin dayanımını geliştiren bir alaşım elementidir. Bu özelliği içinde bulunan karbon miktarına bağlıdır. Yüksek karbonlu çelikelerde mangnanın etkisi sertlik ve dayanımı artırmaktadır.e Elementler için kullanılar peridiyotik yapı A B olarak adlandırılmıştır..
BİR BAŞKA DEYİŞLE

Mangan (Manganez)

Doğada bileşiminde manganez bulunan 300’den fazla mineral bulunmakla birlikte, “U.S. Bureau of Mines”a göre en az %35 mangan içeriğine sahip cevherler “manganez cevheri” olarak adlandırılmaktadır. Önemli mineralleri; pirolüsit (Mn O2), psilomelan (BaMn9O18.2H2O) Manganit (Mn2O3.H2O), Braunit (3 Mn2O3 MnSiO3), Rodokrozit (MnCO3), Hausmanit (MnMn2O4) dir.

Manganez cevheri, içerdiği manganez miktarına göre manganezli demir (%5-10 Mn), demirli manganez (%10-35 Mn) ve manganez cevheri (%35’den fazla Mn) olarak sınıflandırılırlar. Kullanım alanlarına göre; metalurjik manganez cevheri (%46-48 Mn), batarya sanayii manganez cevheri (%78-85 MnO2), kimya sanayii manganez cevheri (74-84 MnO2) ve diğer amaçlarda kullanılan manganez cevheri olarak sınıflandırılır.

Kullanım Alanları : Türkiyede manganez kullanım alanları Dünyadaki kullanım alanlarıyla paralellik gösterir. Ülkemizde tüketilen manganezin %95’e yakını parça manganez cevheri ve alaşımları şeklinde demir çelik sanayiinde kullanılır. Geriye kalan %5 kadarı ise kimya sanayiinde kullanılır.

Manganezin kullanım alanları ve oranları aşağıdaki tabloda verilmiştir.

Ürün /Alan                                                                (%) Oranı

Manganez Metal

 

Çelik (Alaşım Çelikleri Dahil)                                              19

 

Alüminyumlu Alaşımlar                                                       68

 

Diğer Alaşımlar                                                                  13

 

Ferro Manganez

 

Çelik (Alaşım Çelikleri Dahil)                                               97

Pik Demirler                                                                          3

 

Manganezin belli başlı kullanım alanlarında ikamesi bulunmamaktadır. Hurdadan manganez kazanımı da önemsiz düzeydedir. Ancak, demirli ve demirsiz hurdanın ve çelik hurdasının işlemi sırasında ikincil kompanent olarak önemli miktarda manganez kazanılır. 

Dünya Manganez Cevheri Üretim ve Tüketimi

            Dünya manganez rezervlerinin toplamı 300 bin ton, baz rezervleri toplamı ise 5 milyon tondur (metal mangan). 2001 yılında 7260 ton, 2002 yılında 8100 ton, 2003 yılında ise 8000 ton metal mangan üretimi yapılmıştır.

Dünya manganez üretimi, rezervleri ve baz rezervleri (metal içeriği)

Ülke

Cevher Üretimi

Rezerv

Baz Rezerv

2002

2003

Avustralya

 983

  990

   32000

    82000

Brezilya

1300

 950

   18000

    51000

Çin

900

900

   40000

  100000

Gabon

810

1000

   20000

  160000

Hindistan

630

  630

   34000

    50000

Meksika

 88

85

     4000

      9000

Güney Afrika

1504

1630

 370000

4000000

Ukrayna

  940

 830

 140000

  520000

Diğer Ülkeler

 955

985

Az

Az

TOPLAM

8,100

8,000

300,000

5,000,000

                                                           Kaynak : USGS Mineral Commodity Summaries (2004)       

            Üretilen manganez cevherinin büyük bir bölümü Avrupa Birliği, Japonya ve ABD tarafından tüketilmektedir. Dünyada üretilen ferromanganezin önemli bir bölümü de bu ülkeler tarafından tüketilmektedir.

Türkiye Manganez Cevheri Üretim ve Tüketimi

            Türkiye’deki manganez yatakları oluşumları, yaşları, kökenleri ve yapısal özelliklerine göre dört ana gruba ayrılırlar.

Birinci grup genellikle radyolaryalı çörtler içindeki hidrotermal ve hidrojenetik türdeki manganez yataklarıdır. Bunlar, yüksek Mn-Si ve düşük Al-Fe içeriklidirler. Paleotetis, Karakaya, İzmir-Ankara-Erzincan-Kars ve Güneydoğu Anadolu Sütur Kuşağı’nın epiofiyolitleri içinde yaygındırlar.

            İkinci grup, Batı Troslar’da Alt Kretase yaşlı karbonatlar içindeki siyah şeyllerle ilişkili yataklardır. Diyajenetik oluşumlu bu yatakların Fe içeriği radyolaryalı çörtlerle ilişkili yataklardan yüksek, Si içeriği ise düşüktür.

            Üçüncü grup, Karadeniz ve kıta yanının volkanotortulları içindeki hidrotermal oluşumlu yataklardır.

            Dördüncü grup, Trakya havzasındaki Oligosen çökelleri içindeki yataklardır. Düşük Mn-Si içerikli ancak büyük rezervlidirler.

            Türkiye’deki manganez yatakları genelde düşük tenörlü ve küçük rezervli yataklardır. Bilinen manganez rezervleri toplamı 4,5 milyon ton düzeyindedir. Bu rezervin büyük bir bölümü, 4 milyon ton ile Denizli-Tavas-Ulukent yatağındadır.

Türkiye manganez cevheri rezervleri

Yatak Adı

İli ve İlçesi

Rezerv

Görünür+Muhtemel

(Bin ton)

Tenör (%)

Metal İçeriği

Açıklama

Dokuz tekne

Adana-Selimiye

      76.5

  20.0

  15.30

25Fe+18.14. SiO2

Kontromtaşı

Artvin-Ardanuç

      10.0

  38.5

    3.85

6.30 Fe+1.38 SiO2

Paşalık

Artvin-Ardanuç

        8.0

  21.0

    1.68

13.0 Fe+19.0 SiO2

Balçı

Artvin-Borçka

      20.0

42.17

    8.43

5.6 Fe+10 SiO2

Seçkiyat

Artvin-Borçka

      28.8

34.09

    9.82

1.67 Fe+21.51 SiO2

Korucular

Artvin-Borçka

    187.5

  42.8

    8.02

 

Korucular

Artvin-Borçka

    202.5

  22.9

    4.64

 

Çavdarlı

Artvin-Şavşat

      30.0

31.78

    9.53

8.99 Fe+10.28 SiO2

Ulukent

Denizli-Tavas

  4000.0

33.86

1354.4

5.53 Fe+18.27 SiO2

Çağırgangözü

Denizli-Tavas

        5.0

57.85

    2.89

 

Erdoğmuş

Denizli-Tavas

        9.2

40-45

    3.86

 

Dilli

Erzincan-Kemaliye

      24.0

43.93

  10.54

0.73 Fe+2.58 SiO2

Dostallı

Gaziantep-Burç

        2.5

  45.3

    1.13

22.30 SiO2

Karlıca

Gaziantep-Burç

        8.4

34.73

    2.91

 

Zülfikar

Gaziantep-Burç

      30.0

32.62

    9.78

36.29 SiO2

Y.Kalecik

Gaziantep-Musabeyli

        9.0

30-48

      3.6

15.40 SiO2

K.Mustafapaşa

Gaziantep-Musabeyli

    145.0

53.65

    7.78

21.50 SiO2

Suçıkan

Muğla-Fethiye

        5.0

  32.9

    1.65

 

Mendos

Muğla-Fethiye

      23.0

49.35

  11.35

 

Çancıkorun

Rize-Fındıklı

        5.0

46.90

    2.35

4.70 SiO2

Çayırdüzü

Rize-Çamlıhemşin

        4.5

  40.0

      1.8

 

Çubuklu

Trabzon-Araklı

      18.0

  45.0

      8.1

 

Kızırnas

Trabzon-Araklı

        3.6

49.23

    1.77

 

Çağlayan

Trabzon-Maçka

        1.5

  45.3

    0.68

4 Fe

Küçükyaz

Trabzon-Maçka

      37.5

  51.0

    1.92

3 Fe

Ocaklı

Trabzon-Maçka

      28.0

  35.0

    9.80

3 Fe

Kızlamba

Zonguldak-Ereğli

      19.0

  35.0

    6.65

 

Düzpelit

Zonguldak-Ereğli

        5.0

  25.0

    1.25

 

TOPLAM

 

4.561.75

 

  15.76

 

Kaynak: VIII. Beş Yıllık Kalkınma Planı Manganez Ö.İ.K Raporu

            Türkiye’nin manganez cevheri ve ürünlerine talebi büyük oranda Kardemir, İsdemir ve Erdemir’in taleplerine bağlıdır. Türkiye’de manganez üretimi yıllık ortalama 20 bin ton ile Denizli-Tavas-Ulukent yatağından yapılmaktadır. 2003 yılında 18.000 ton manganez cevheri üretilmiş olup, 2002 yılına göre %10’luk birdüşüş gözlenmiştir.

Yıllık Manganez Cevheri Üretimi

Yıllar

1999

2000

2001

2002

2003

Üretim (Ton)

29.029

23.000

20.000

20.000

18.000

Üretilen cevherin önemli bir bölümü Erdemir tarafından tüketilmektedir. Kardemir’in manganez cevheri ihtiyacı ise %4-4,5 Mn içeren Hekimhan-Deveci manganezli-demir yatağından yapılan üretimle karşılanmaktadır. Kardemir ve İsdemir’in ferromangan ve ferrosilikomangan talepleri ithalat yoluyla karşılanmakta ve önemli bir gider kalemi olarak ortaya çıkmaktadır.

Ferromangan ithalatı yıllık ortalama 10 milyon U.S. $’ın üzerinde gider oluşturmaktadır. Manganez ithal ürünlerine yapılan ödemeler ve uç ürünlere demir-çelik endüstrisinde artan talep gözönüne alındığında, Ulukent (Denizli-Tavas) manganez yatağının tam kapasiteyle çalıştırılarak demir-çelik fabrikalarımız beslenmelidir.Üretimin yurtiçi talebi karşılayamadığı durumlarda ise Deveci sideritleri gibi manganlı demir yataklarının ek üretim kaynakları olarak işletilmesi uygun olacaktır. Kardemir, tesislerinde ihtiyaç duyduğu manganezi karşılamak üzere Deveci Yatağından yılda 200.000 ton civarında manganezli demir cevheri üretmektedir.

 

Sonuç ve Değerlendirmeler

Ø  Ferromangan ithalatı yıllık ortalama 10 milyon U.S. $’ın üzerinde gider oluşturmaktadır.

Ø  Manganez ithal ürünlerine yapılan ödemeler ve uç ürünlere demir-çelik endüstrisinde artan talep gözönüne alındığında, Ulukent (Denizli-Tavas) manganez yatağının tam kapasiteyle çalıştırılarak demir-çelik fabrikalarımız beslenmelidir. Üretimin yurtiçi talebi karşılayamadığı durumlarda ise Deveci sideritleri gibi manganlı demir yataklarının ek üretim kaynakları olarak işletilmesi uygun olacaktır.

Ø  Türkiye’de manganez cevheri üretimi Denizli-Tavas-Ulukent’de yapılmaktadır. 1991-1998 yılları arasında yapılan üretim miktarları ortalaması 24.000 ton civarındadır. Bu rakam 1988 yılında 42.000 tona kadar yükselmiştir. Üretim miktarları 2001-2002 yıllarında 20.000 ton, 2003 yılında da 18.000 tona düşmüştür.

Ø  Üretilen cevher ağırlıklı olarak Erdemir tarafından tüketilmektedir. İsdemir ve Kardemir ferromangan ve ferrosilikomangan ihtiyaçlarını ithal etmek suretiyle karşılamaktadır.

Ø  Türkiye’de manganez yatakları ile ilgili yapılan arama çalışmalarında iki bölge potansiyel açıdan dikkat çekmektedir. Bunlardan birincisi, Denizli-Tavas-Ulukent yatağının da bulunduğu Güneybatı Anadolu bölgesidir. Bölgede yapılan çalışmalarda Muğla-Fethiye-Mendos dağı ve civarında manganez cevherli seviyeler saptanmıştır. İkinci cevherleşme, Trakya havzasındaki Oligosen çökelleri içerisinde yer alan sedimanter manganez oluşuklarıdır. Karadenizi çevreleyen Chiatura, Nikopal, Varna, Laba yataklarıyla önemli kökensel benzerlikler gösteren bu oluşuklar düşük tenör ve büyük rezervlere sahiptirler. Bu iki bölgede geçmişte yapılan çalışmaların değerlendirilerek potansiyel bilgilerinin güncelleştirileceği ve olası hedef sahaların belirleneceği arama projelerinin hazırlanması uygun olacaktır.

 


 
ÇALİŞMAK HEMDE ÇOK ÇALIŞMAK VEDE KALİTELİ ÜRETİM YAPMAK İÇİN HEM ÖĞRENECEĞİZ HEMDE ÖĞRETECEÜİZ.
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol